Skip to main content
/

Site Navigation

Your Account

Choose Language

  1. This is a beautifully simple kit. PCB 24V 90W PSU brick. Double insulated, Universal input.
    • This is a beautifully simple kit.

    • PCB

    • 24V 90W PSU brick. Double insulated, Universal input.

  2. Please read the notes and click through all the photos. Also, download and read Nelson's article on this project - https://www.diyaudio.com/forums/attachme...
    • Please read the notes and click through all the photos.

    • Also, download and read Nelson's article on this project -

    • https://www.diyaudio.com/forums/attachme...

    • Print the schematic and have in front of you when stuffing the PCB

  3. Photo 1 - Connectors and hardware Photo 2 - Rear 15,000uF capacitors. Front 1,000uF (Black cans), 3.3F (blue cans), 1uF film (blue box) Photo 3 - resistors, potentiometers
    • Photo 1 - Connectors and hardware

    • Photo 2 - Rear 15,000uF capacitors. Front 1,000uF (Black cans), 3.3F (blue cans), 1uF film (blue box)

    • Photo 3 - resistors, potentiometers

    • Neat fact - 3.3F is 3,300,000uF

  4. Rear - IRF520 (N-channel) and IRF9520 (P-channel) Front- LSK170 (N, Q1) and LSJ74 (P, Q2)
    • Rear - IRF520 (N-channel) and IRF9520 (P-channel)

    • Front- LSK170 (N, Q1) and LSJ74 (P, Q2)

    • Photo 2 - Heatsinks

  5. Power resistors are mounted first. Leave some room under them for airflow. The nut is a good gauge. You can use the heatsinks as an impromptu stand for holding the PCB.
    • Power resistors are mounted first.

    • Leave some room under them for airflow. The nut is a good gauge.

    • You can use the heatsinks as an impromptu stand for holding the PCB.

    • Neatness counts - Bend the leads so the value is readable, and so it reads left to right. The value markings are R33, R75, 1R0.

    • Low-ohmic resistors use "R" as a decimal point. "R33" means 0.33ohm. "1R0" is 1.0ohm.

  6. Install and solder the small resistors next. Measure every one before installation. Face them so the heavier brown stripe is on the right. (Or bottom, for the three resistors that point up.)
    • Install and solder the small resistors next.

    • Measure every one before installation.

    • Face them so the heavier brown stripe is on the right. (Or bottom, for the three resistors that point up.)

    • Photo 2 is provided as a reference to help stuffing, but it's much better to measure every one and refer to the schematic before installation.

  7. In all cases, make sure the connectors are flat and properly aligned with the PCB before soldering. In all cases, make sure the connectors are flat and properly aligned with the PCB before soldering. In all cases, make sure the connectors are flat and properly aligned with the PCB before soldering.
    • In all cases, make sure the connectors are flat and properly aligned with the PCB before soldering.

  8. It is very helpful to tape the jumper pins to the PCB before soldering. This will hold them in place and keep the vulgar language down to an absolute minimum. Don't try to hold them on with a finger whilst soldering, that is a fantastic way to burn yourself.
    • It is very helpful to tape the jumper pins to the PCB before soldering. This will hold them in place and keep the vulgar language down to an absolute minimum.

    • Don't try to hold them on with a finger whilst soldering, that is a fantastic way to burn yourself.

  9. At this point you should have the edge connector items stuffed, and the potentiometers.
    • At this point you should have the edge connector items stuffed, and the potentiometers.

    • Power switch orientation does not matter.

    • LED needs to be stuffed with the long lead in the + hole.

  10. Stuff the small transistors. Watch the orientation, the flat of the device lines up with the flat drawn on the silk. Leave the leads long. I place the PCB on the tabletop, solder one leg from the top to keep it in place, then flip the board and finish the rest of the legs.
    • Stuff the small transistors. Watch the orientation, the flat of the device lines up with the flat drawn on the silk.

    • Leave the leads long. I place the PCB on the tabletop, solder one leg from the top to keep it in place, then flip the board and finish the rest of the legs.

    • Small capacitors next. Long lead in the + hole.

    • The - of the capacitor can is marked, but the convention shows the + marked on the silkscreen. So be careful.

  11. Install the large capacitors. Orient the - marks on the cans all to the inside.
    • Install the large capacitors. Orient the - marks on the cans all to the inside.

  12. A little heatsink goop is helpful if you have some. 1) Attach the Mosfet to the heatsink but leave slightly loose. 2) Insert Heatsink/Mosfet assembly into PCB.
    • A little heatsink goop is helpful if you have some.

    • 1) Attach the Mosfet to the heatsink but leave slightly loose.

    • 2) Insert Heatsink/Mosfet assembly into PCB.

    • 3) Solder heatsink to the PCB first. There's no trick to this, it just takes some time with the soldering iron, as it is a heatsink after all...

    • 4) Snug down (modest torque, please don't crank it) the Mosfet attach hardware.

    • 5) Finally solder the Mosfet.

  13. The provided metal standoffs and their associated screws are used as feet.
    • The provided metal standoffs and their associated screws are used as feet.

    • You may use something else if you choose to, this is DIY after all... :)

    • Setting bias instructions

    • Refer to article until this guide is completed

Finish Line

One other person completed this guide.

6L6

Member since: 04/30/2018

12 Guides authored

Team

AwesomeSauce Member of AwesomeSauce

Community

2 Members

12 Guides authored

0 Comments

Add Comment

View Statistics:

Past 24 Hours: 1

Past 7 Days: 9

Past 30 Days: 26

All Time: 282